Hypoxia can generally be corrected through a high FiO2, but patients with airway obstruction are at risk of high airway pressures, breath stacking leading to intrinsic PEEP, barotrauma, and volutrauma. To minimize intrinsic PEEP, it is recommended that expiratory flow time be increased as much as possible and that tidal volumes and respiratory rates are set at low values. Permissive hypercapnia enables a low respiratory rate of 6-8 breaths per minute to be used, as well as an increased I:E ratio of 1:1.5 or 1:2.
PEEP may benefit some asthmatic patients by reducing the work of breathing and maintaining open airways during expiration, but its effects are difficult to predict and must be carefully monitored. Patients with asthma and COPD are at particular risk of barotraumatic progression to tension pneumothorax, a complication that can initially appear similar to runaway intrinsic PEEP. These conditions may be distinguished by temporary detachment of the patient from positive-pressure ventilation; if exhalation results in a recovery of pulse or normal blood pressure, the diagnosis is intrinsic PEEP.
CPAP and BiPAP will benefit some asthmatics and many patients with COPD. These patients will require careful monitoring as they can easily deteriorate from hypercarbia, intrinsic PEEP, or respiratory exhaustion. Nevertheless, aCochraneDatabase Systematic Review analysis of trials including patients with severe COPD exacerbations demonstrated that the use of noninvasive positive-pressure ventilation absolutely reduced the rate of endotracheal intubation by 59% (95% confidence interval "CI" of relative risk "RR": 0.33-0.53), the length of hospital stay by 3.24 days (95% CI: 2.06-4.44 days), and the risk of mortality by 48% (95% CI of RR: 0.35-0.76).